

Brain activation and suppression with morphine in a nonhuman primate model of postoperative pain

Aldric Hama, Shinya Ogawa, Yuji Awaga, Takahiro Natsume, Ikuo Hayashi, Akihisa Matsuda, Hiroyuki Takamatsu Pharmacology Group, Hamamatsu Pharma Research, Inc., Hamamatsu, Japan

Pre

Summary

Robust proximal and distal postoperative pressure hypersensitivity in macaques.

Postoperative hypersensitivity relatively short-lasting.

Activation of cingulate and insular cortex could be related to postoperative pain.

□ Lack of pregabalin efficacy in the macaque compared to the rat: possibly due to an underlying speciesspecific neurological mechanism.

Potential differential efficacy: rat vs. macaque

Drug	Rat hind paw incision	NHP abdominal incision
lorphine	Yes	Yes
clofenac	No MTD: 10 mpk, p.o.	No MTD: 3 mpk, i.m.
egabalin	Yes	No MTD: 20 mpk, i.m.

MTD, maximum tested dose.

Conclusions

□ The macaque model could be used to better understand mechanism of clinical postoperative pain.

□ Macaque brain activity could be used to predict efficacy of novel therapeutics.

□ Differential brain activation between pain states suggests a need for pain-specific analgesics.

Acknowledgements

We thank the Animal Care Group for providing excellent

Authors are employees of Hamamatsu Pharma Research,

E-mail: info_us@hpharma.jp Website: www.hpharmausa.com